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We use fundamental matrix (F-matrix) method derived from coupled wave theory to simplify the diffraction 
simulation of chirped volume Bragg grating (CVBG) and it can be applied to arbitrary grating phase 
profiles. With the F-matrix method, we study the diffraction in CVBG. The spectral response of CVBG is a 
gate-like function, and the passband width of spectral response is related to the product of grating thickness 
and spatial chirp rate. The peak diffraction efficiency of CVBG increases monotonously as the amplitude of 
refractive index modulation increases. Incident beams with different wavelengths will be mainly diffracted at 
different depths of CVBG to match the Bragg condition.
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is the interested wavelength), requires large amount of 
calculation. Even though the transfer matrix method 
requires the mesh size smaller than Ʌ/N (where Ʌ is 
the grating period), it still requires much calculation 
capacity. However, the fundamental matrix (F-matrix) 
method proposed in this letter requires mesh size of 
more than Λ, and simulation can be realized in per-
sonal computer.

F-matrix method can also be applied to arbitrary 
grating phase profiles. In this method, the CVBG is 
divided into multiple uniform-period VBGs, and each 
grating is characterized with a F-matrix[10] which can be 
derived from the classical coupled wave theory[11]. With 
the method, the diffraction in CVBG is studied. The 
spectral response of CVBG is a gate-like function, and 
the passband width is related to the product of grat-
ing thickness and spatial chirp rate. The broad spectral 
response of CVBG is due to the beams whose different 
wavelengths are diffracted at different depths of CVBG. 

The uniform-period VBG owns cosinoidal refrac-
tive index and a uniform grating period, and the wave 
equation for uniform-period VBG is a Mathieu’s dif-
ferential equation. Based on the analytical solutions 
of this equation, the coupled wave theory[11] and the 
rigorous coupled wave theory[12] can be used to char-
acterize the VBG. The CVBG, however, has the grat-
ing period varying along the depth. The wave equation 
for the CVBG is more complex, and the solution to 
this equation is far more different from that of the 
Mathieu function. So the coupled wave theory or rig-
orous coupled wave theory cannot be directly used to 
characterize CVBGs. While considering a small part of 

Chirped pulse amplification (CPA) has been widely 
applied in lasers to obtain ultrashort laser pulse with 
high peak power[1,2]. The indispensable devices in CPA 
systems are dispersion elements such as diffraction 
gratings, prism pairs and fibers[3], which are used as 
stretchers and compressors. The most widely used dis-
persion element is the surface grating because of its 
high dispersion. However, the laser damage threshold 
for surface grating is still a problem and may be the 
limit for obtaining high-power ultrashort laser pulses. 
The method for increasing laser output power requires 
a grating of large dimensions. In petawatt-level lasers, 
surface gratings with ruled areas of about 1×1 (m) 
should be employed to obtain high-power output and 
avoid damage[4]. Such a huge aperture requires extreme 
fabrication. The chirped volume Bragg grating (CVBG), 
a kind of VBG of which the grating periods vary with 
depth, may be an alternative element as the stretcher 
or compressor in CPA system because of its high dis-
persion, high damage threshold, simple configuration, 
easy alignment, etc. 

The first application of CVBG in CPA system was 
reported by Galvanauskas in 1998. With a 200 μm×300 μm 
×5 mm CVBG written in hydrogen-loaded germanosili-
cate glass, a pulse of 500 nJ was obtained[5]. Thereafter, 
a series of experimental investigations on CPA systems 
with CVBGs recorded in PTR glass were studied[6,7]. 
However, the analytical theory for CVBGs[8] to the best 
of our knowledge is derived from Shapiro’s theory[9] and 
is applied only for quasi-sinusoidal grating with qua-
dratic phase. The finite difference time domain (FDTD) 
method, in which the mesh size is about λ/10 (where λ 
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Fig. 1. Uniform decomposition of CVBG.

a CVBG, the variation of grating period can be neg-
ligible and thus such a small part can be treated as 
an individual uniform-period VBG. Thus, the whole 
CVBG can be regarded as the congregation of the uni-
form-period VBGs. The CVBG discussed in this letter 
is an unslanted reflective one with linear chirping, and 
operates at normal incidence. The refractive index of 
CVBG is
	 n(z) = n + ∆n cos(φ(z)),� (1)
where n is the average refractive index, ∆n (∆n �  n) 
is the amplitude of refractive index modulation, φ(z) is 
the grating phase, with which the grating period and 
spatial chirp rate can be derived. For a VBG, the grat-
ing phase is linear with respect to depth. For a linear 
chirped CVBG, however, it is a logarithmic function. 
The refractive index outside the CVBG is assumed to 
be the same as the average refractive index n.

As shown in Fig. 1, a CVBG is divided into N 
uniform-grating VBGs which are small enough to be 
regarded as uniform-period VBGs, and these VBGs 
have their own parameters such as grating thicknesses 
and grating periods. The VBG is well studied with 
the classical coupled wave theory, and we rewrite this 
theory to obtain more common results with which the 
adjacent VBGs can be mathematically connected effec-
tively. Only two waves are assumed to propagate in 
VBGs as usual, the reference wave R and the signal 
wave S, and the coupled wave equations[11] are obtained.
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where R and S are the complex amplitudes of the refer-
ence beam and signal beam, ϑ = 2π/Λ - πλ/nΛ is the 
dephasing parameter, κ = πΔn/λ - jα1/2 is the coupling 
constant, λ is the incident wavelength in free space, 
Λ is the grating period of the VBG, α is the average 
absorption constant, and α1 is the absorption constant 
modulation.

The general solution of Eq. (2) is
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We insert Eq. (3) into the coupled wave Eq. (2), and 
compare the terms with equal exponentials (exp(γ1z) 
and exp(γ2z)). Then the constants γ1 and γ2 are obtained.
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And with the expression of γi (i = 1, 2), the coefficients 
ri and si (i = 1, 2) can be obtained. They are interre-
lated as
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In general, once the boundary conditions are estab-
lished, ri and si (i = 1, 2) can be simply derived. In 
order to get a more general formalism about the refer-
ence wave and signal wave, the ith VBG (di - 1 ≤ z ≤ di) 
is written as
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where Fi is the F-matrix of the ith VBG, and this for-
malism can simplify the congregation of N individual 
uniform-period VBGs.

Combining Eqs. (3) and (6), and comparing the 
terms with equal constants (r1 and r2), the matrix Fi 
can be obtained as
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where d(i) = di - di - 1 is the thickness of the ith VBG.
According to Eq. (6), the F-matrix of a CVBG is the 

product of F-matrices of the N uniform-period VBGs 
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With the boundary conditions R(0)=1 and S(d)=0, the 
complex amplitude of the signal wave diffracted by the 
CVBG is 21 11(0) / ,S F F=  and the diffraction efficiency is

	
* *

21 21 11 11/ .F F F Fh = � (12)
The division of a CVBG is arbitrary, but has to keep 
the continuity of CVBG. In other words, the grating 
phase at the interface between two adjacent VBGs 
must satisfy continuity condition, which is described as

	 1 1 12 / ,k k k kdj j p− − −= + Λ � (13)
where φk-1+2πdk-1/Λk-1 represents the grating phase at 
the end of the (k - 1)th VBG and φk is the early grat-
ing phase of kth one.

The diffraction properties of CVBG are discussed with 
F-matrix method. The curve in Fig. 2(a) represents the 
gate-like spectral response of CVBG with central grat-
ing period of 343 nm, spatial chirp rate of 3 nm/cm,  
thickness of 1 cm, and the amplitude of refractive index 
modulation of about 600 ppm. The passband width of 
spectral response of CVBG is about 9 nm (full-width at 
half-maximum, FWHM). The inset of Fig. 2(a) shows 
the comparison between the F-matrix method and 
the transform matrix method. The simulation results 
obtained from these two methods match well.

In F-matrix method, the CVBG is the congrega-
tion of VBGs with different grating periods and Bragg 
wavelengths. Since the diffraction takes place only 
when the wavelength of incident beam equals the Bragg 
wavelength of VBG, beams with wavelengths outside 
the passband of CVBG will simply pass through and 
only the ones with wavelengths inside the passband will 
be efficiently diffracted and reflected back. Apart from 
VBG, CVBG owns a wider passband which can be up 
to 100 nm, and the passband width is determined by 
the product of thickness and spatial chirp rate as

	 2 (d /d ),B n D z∆ = ⋅ ⋅ Λ � (14)
where D is the thickness of CVBG, (dΛ/dz) is the spa-
tial chirp rate, and the average refractive index n = 1.5. 

The curve of diffraction efficiency at the passband 
from 1025.5 to 1034.5 nm is almost flat. Some oscilla-
tions exist around 73%, which is the diffraction efficiency 
at the central wavelength 1030 nm and chosen as the 
peak diffraction efficiency of CVBG for simple. Higher 
peak diffraction efficiency can be obtained by increasing 
the amplitude of refractive index modulation (Fig. 2(b)). 
When the amplitude of refractive index modulation and 
grating thickness are fixed values, diffraction efficiency 
can also be improved by decreasing the spatial chirp 
rate. This improvement, however, will result in decreas-
ing of passband width as shown in Eq. (14).

As shown in Fig. 3(a), the CVBG is divided into  
15 parts with same thickness. The diffraction efficiency 
curve of each part takes the same shape due to the 
same amplitude and form of refractive index modula-
tion. The passband width of each part is about 0.7 nm  
(FWHM), which is a little wider than 1/15 of the 
passband width of CVBG due to spectral overlapping. 

Fig. 2. (a) Spectral response of CVBG and (b) peak diffrac-
tion efficiency versus refractive index modulation and spatial 
chirp rate.

The incident beams with different wavelengths are 
diffracted at different depths of CVBG. As shown in 
Fig. 3(b), the diffraction efficiency peaks at the center 
of each part and corresponds to a certain wavelength 
between 1025.5 and 1034.5 nm, varying along the grat-
ing depth. An incident beam with the wavelength of 
1028.2 nm will be mainly diffracted by the No. 5 part 
of which the diffraction efficiency at 1028.2 nm is of 
69%, while the adjacent parts (Nos. 4 and 6) shows low 
diffraction efficiencies at 1028.2 nm, and the diffrac-
tion efficiencies of parts far away from No. 5 are much 
lower. Thus, most of incident beam power is diffracted 
by the main part (such as the No. 5 part for beam with 
wavelength of 1028.2 nm), and coherent superposition 
of diffraction by the parts before and after the main 
one results in diffraction efficiency oscillation.

Fig. 3. (a) Division of CVBG and (b) diffraction in CVBG.
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The F-matrix method is discussed to simplify the 
diffraction simulation of CVBG. CVBG is divided into 
multiple uniform-period VBGs, and each VBG is char-
acterized with an F-matrix derived from the classical 
coupled wave theory. Then, the F-matrices of all VBGs 
are multiplied together. A new F-matrix is obtained, 
from which the diffraction efficiency of CVBG can be 
obtained. The basic mesh of F-matrix method is VBG, 
and it needs less calculation amount than the transfer 
matrix method or FDTD. With the F-matrix method, 
simulation of CVBG of thickness of more than tens of 
centimeters can be done in personal computer.

In conclusion, we study diffraction in CVBG. The 
passband width of spectral response of CVBG is related 
to the product of thickness and spatial chirp rate. As 
the amplitude of refractive index modulation increases, 
peak diffraction efficiency of CVBG increases monoto-
nously. With a fixed grating thickness, decreasing the 
spatial chirp rate can also improve the peak diffrac-
tion efficiency. Although incident beam with a certain 
wavelength will mostly be diffracted at a correspond-
ing depth of CVBG to match the Bragg condition, 
coherent superposition of diffraction by other parts of 
CVBG will increase or decrease the efficiency and lead 
to diffraction efficiency oscillation of CVBG.
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